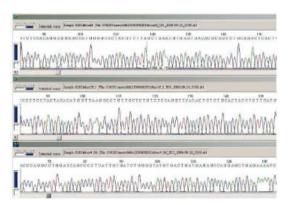

Genetik in der Orthopädie

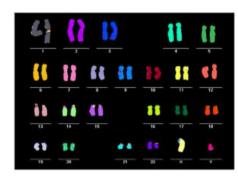
Kristina Aubell Institut für Humangenetik

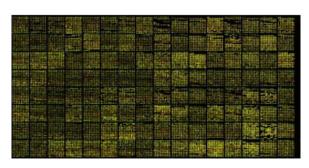


Genetische Beratung



27 TAs


Molekulargenetik, NGS,...

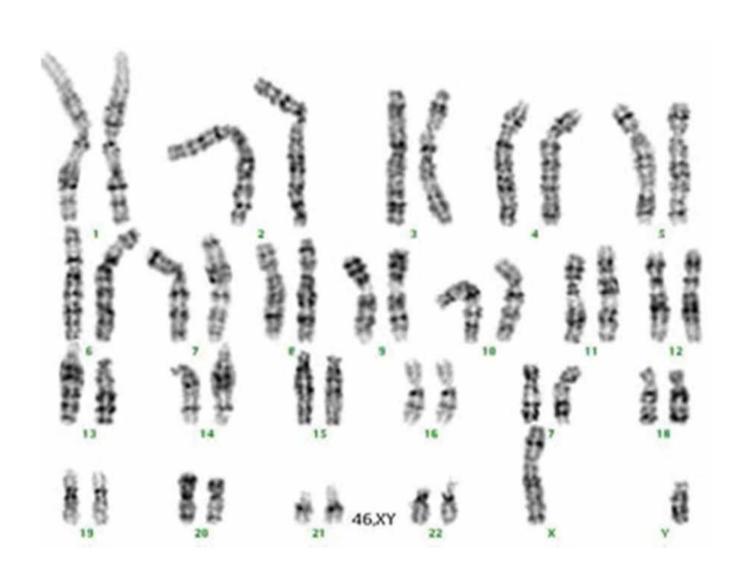

Zytogenetik

FISH

Array-Analysen

Vererbungslehre

Gregor Mendel (1822-1884)



Phänotyp

- → Summe aller Merkmale eines Individuums
- → Einzelmerkmal eines Individuums
 - = klinisches Erscheinungsbild

Genotyp

- → individuelle Genkombination eines Individuums
- → individuelle Genkombination an einem Genlocus
- → jedem Genotyp entspricht ein bestimmter Phänotyp (nur bei rein monogenen, umweltstabilen Merkmalen ist dies eindeutig zuordenbar)

<u>Allele</u>

→ DNA-Abschnitte eines homologen Genlocus mit unterschiedlicher Basensequenz

Wildtypallel

→ ursprüngliche Form des Gens innerhalb einer Art

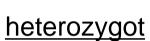
multiple Allelie

- → in einer Population sind mehr als 2 Allele für einen Genort vorhanden
- → entsteht durch Mutation,
- → Häufigkeit einzelner Allele durch Selektion begünstigt

Mutation

- → jede Sequenzveränderung des Erbgutes
- → "krankheitsverursachend"
- → Keimbahnmutation vs. somatische Mutation

<u>Polymorphismus</u>

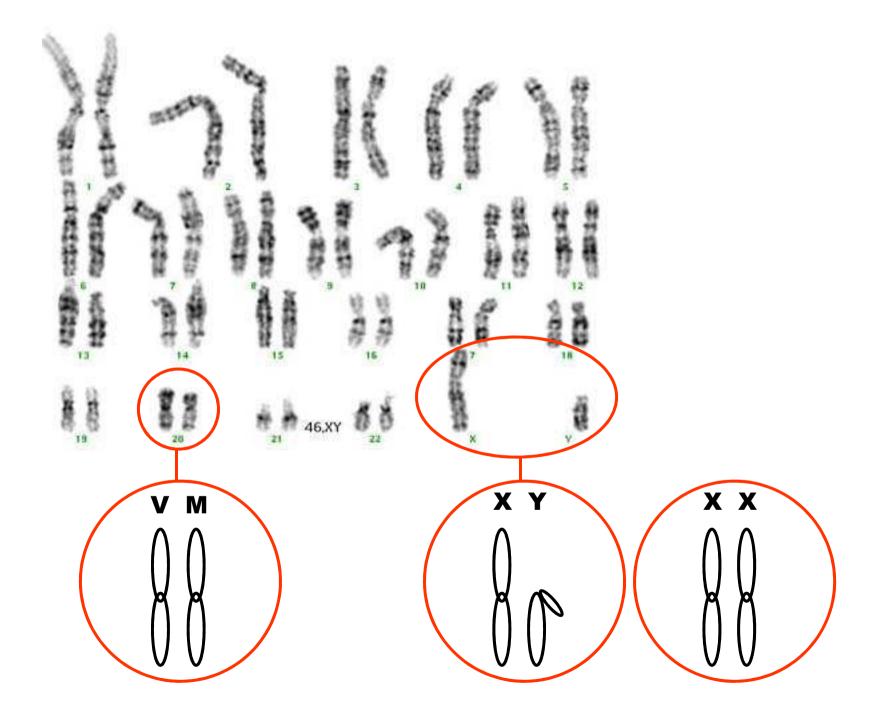

- → Auftreten natürlicher Genvarianten (häufig als SNPs)
- → keine Krankheitsrelevanz
- → >1% Häufigkeit

UV (unclassified variant; variant of uncertain significance)

→ Genvarianten mit derzeit noch unklarer pathogener Auswirkung

homozygot

- → reinerbig für gegebenen Genlocus
- → zwei Gene mit identischer Basensequenz auf dem Genort homologer Chromosomen


- → mischerbig für gegebenen Genlocus
- → zwei Gene mit unterschiedlicher Basensequenz (=Allele) auf dem Genlocus homologer Chromosomen

compound heterozygot

- → mischerbig für gegebenen Genlocus
- → wie heterozygot, aber zwei pathogene Allele
- → autosomal rezessive Erkrankungen

<u>hemizygot</u>

- → ein oder mehrere Genorte sind im sonst diploiden Chromosomensatz nur einmal vorhanden
- → zB Geschlechtschromosomen (XX, XY)

dominant

- → Merkmal im heterozygoten Zustand ausgeprägt
- → einfache Gendosis genügt zur Ausprägung des Merkmals

rezessiv

- → Merkmal nur im homozygoten/compound heterozygoten Zustand ausgeprägt
- → doppelte Gendosis für die Ausprägung des Merkmals notwendig (Ausnahme: Hemizygotie)

kodominant

- → 2 Allele prägen unabhängig je 1 Merkmal aus
- → zB. Blutgruppen AB0 System

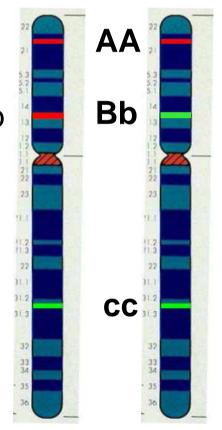
monogen

→ durch die Wirkung eines Genlocus bedingtes Merkmal

polygen

→ durch die gleichzeitige Wirkung mehrerer Genloci bedingtes Merkmal

multifaktoriell


→ durch die gleichzeitige Wirkung mehrerer Genloci (Polygenie) und nicht genetischer Faktoren bedingtes Merkmal

Monogen vererbte Merkmale

homozygot für A

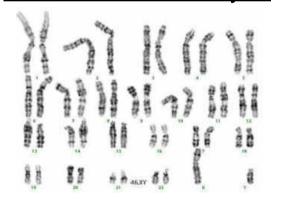
heterozygot für Bb

homozygot für c

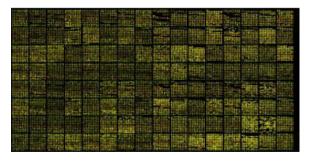
DOMINANT wirkend

rezessiv wirkend

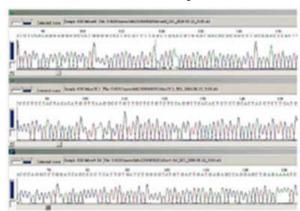
Erbkrankheit / besonderes Merkmal


- → Folge einer pathogenen (oder mehrerer pathogener)
 Mutation(en)
- → unter Umständen nur Prädisposition (zB. Tumorneigung)
- → Manifestionsalter und Schweregrad der Ausprägung sind mitzuberücksichtigen
 - zB schwerer Stoffwechseldefekt vs. Brachidaktylie D

Untersuchungsmöglichkeiten


Klinisch-genetische Untersuchung

- exakte Charakterisierung des Phänotyps
- Einholen relevanter Vorbefunde
- Schwangerschaftsverlauf (?Exogene Einflüsse)
- Labor
- Radiologische Vorbefunde
- Meilensteine der kindlichen Entwicklung


Chromosomenanalyse

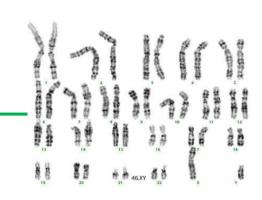
Array CGH

Gen-Analysen

Auflösung:

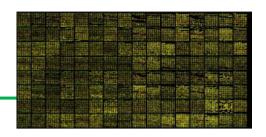
Chromosomenanalyse < Array CGH < Genanalysen

Chromosomenanalyse

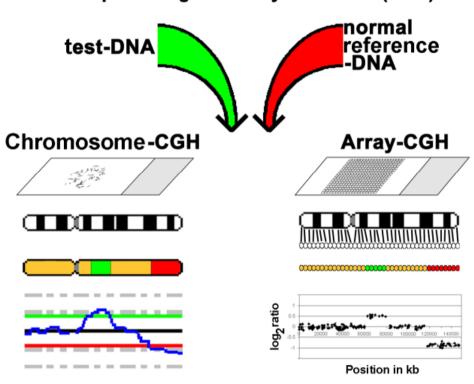

- Chromosomenanalyse (Zytogenetik + FISH)
 - → numerische Chromosomenveränderungen

zB. 47,XX,+21 (Down Syndrom)

zB. 47,XXY (Klinefelter Syndrom)


- → strukturelle Chromosomenveränderungen > ca. 5-10 Mio bp (Basenpaare)
- Chromosome
 B
 Chromosome
 A
 Balanced
 Translocation
- Deletionen, Duplikationen, Inversionen...
- Translokationen:
 - → Disruption eines Gens
 - → Bildung eines Fusionsgens

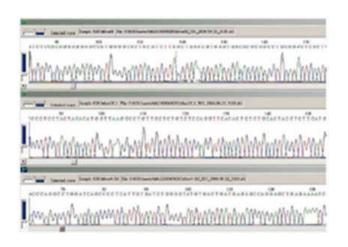
Chromosomenanalyse



- Mit einer Chromosomenanalyse kann NICHT nachgewiesen werden:
 - Monogene Erkrankungen
 - Punktmutationen
 - Mikroduplikationen, -deletionen

ArrayCGH

comparative genomic hybridization (CGH)


- → Mikrodeletionen
- → Mikroduplikationen

200fach höhere Auflösung als Chromosomenanalyse

- Mit einer ArrayCGH kann NICHT nachgewiesen werden
 - → balancierte strukturelle Chromosomenveränderngen
 - → monogene Erkrankungen durch zB. Punktmutationen

Gen-Analysen

- Sequenzierung +/- MLPA eines bestimmten Gens (Sanger Sequenzierung, Next Generation Sequencing (NGS))
- Mutationsstatus bei familiär bekannter Mutation (PCR)
- Häufigste Mutationen bezogen auf Population (PCR)
 - → Punktmutationen (Substitution, Deletion, Insertion einzelner Nukleotide)
 - → Deletionen/Insertionen

Das menschliche Genom besteht aus ~ 22.000 Genen. Nur wenn die klinische Verdachtsdiagnose zur Analyse der richtigen Gene führt, kann eine sinnvolle Diagnostik erfolgen.

Vererbung monogen bedingter Merkmale

- Autosomal rezessiv (AR)
- Autosomal dominant (AD)
- X-chromosomal rezessiv (XR)
- X-chromosomal dominant (XD)

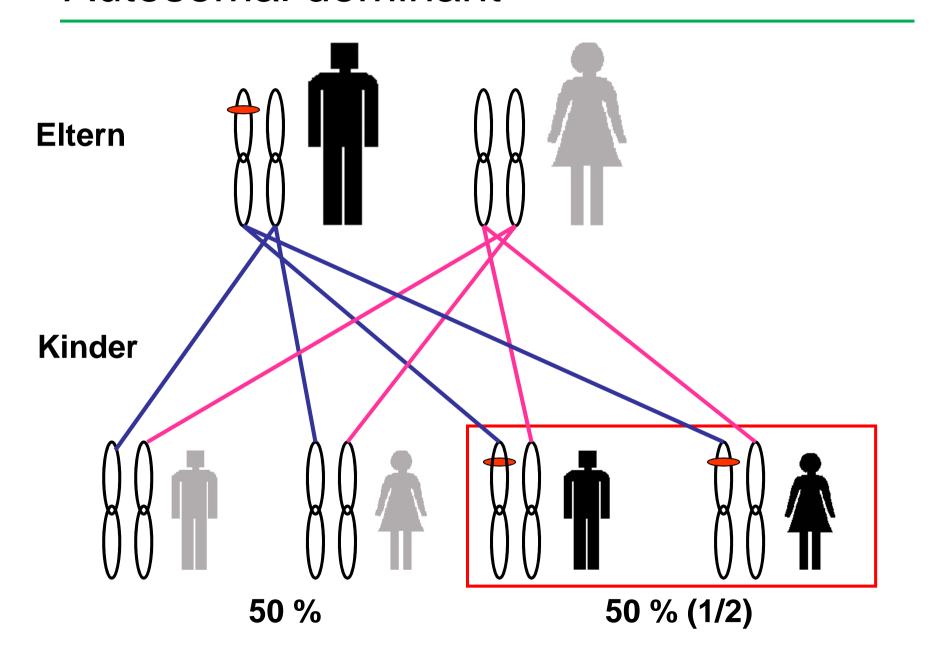
Y-chromosomal

Charakteristik des AD Erbgangs

- Vererbung geschlechtsunabhängig
- Merkmalsfreie Überträger kommen nur in Ausnahmefällen vor (CAVE: verminderte Penetranz)
- Merkmalsträger kommen in allen Generationen vor (CAVE: verminderte Penetranz)
- Wegen variabler Expressivität ist es wichtig bei Gesunden auf Minimal-Symptome zu achten

Charakteristik des AD Erbgangs

- Bei homozygoten/compound heterozygoten Anlageträgern tritt meist eine schwerere Form der Erkrankung auf, häufig letal
- Anteil von Neumutationen (Eltern keine Merkmalsträger) unterschiedlich hoch


Achrondroplasie: 90% de novo

Neurofibromatose Typ I: 50% de novo

Chorea Huntington: selten de novo

- Möglichkeit des Keimbahnmosaiks (Eltern keine Merkmalsträger)
 - Wiederholungsrisiko der Osteogenesis imperfecta: 6%

Autosomal dominant

Achondroplasie

<u>Dysproportionierter Minderwuchs durch</u> <u>Ossifikationsstörung:</u>

> Männer: 131±5.6 cm Frauen: 124±5.9 cm

- Verkürzung der langen Röhrenknochen
- Makrozephalus, Gesichtsdysmorphien
- LWS-Lordose (Kyphose der unteren BWS)
- Kurze Finger (V-förmige Spreizung)

Genlocus: 4p16

Gen: FGFR3 (Fibroblast Growth Factor Receptor 3)

<u>Vererbung:</u> autosomal dominant (AD)

in 98% der Fälle 2 häufige Mutationen: G1138A, G1138C

→ bewirken einen Aminosäureaustausch von Glycin auf Arginin

Achondroplasie

Penetranz: 100%

Geringe Expressivitätsschwankung

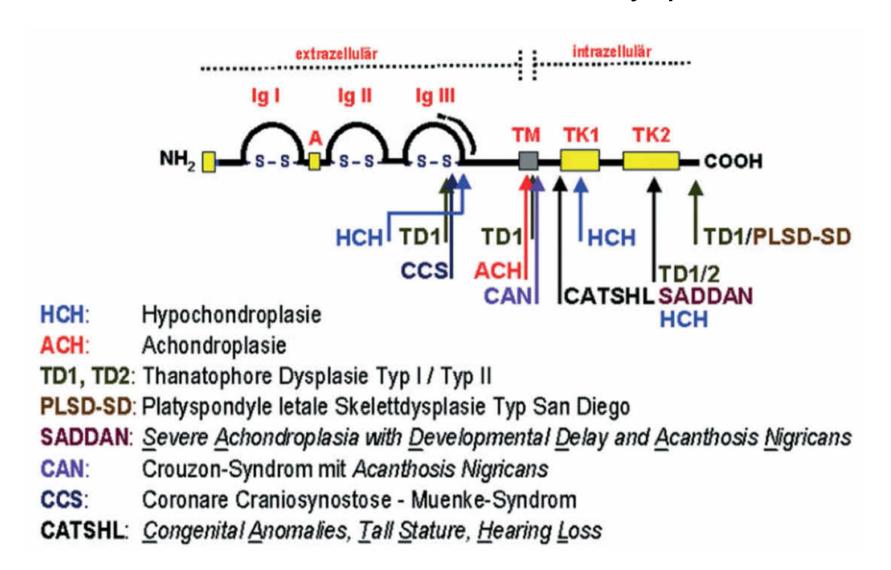
• Inzidenz: 1:27.000

• 80-90% Neumutationen

 hohes väterliches Alter führt zu mehrfach erhöhtem Risiko

Jones K L. Smith's Recogn.Patterns of Human malformation 2006

Achondroplasie


Vajo, Z. et al. Endocr Rev 2000;21:23-39
ENDOCRINE

REVIEWS

Schwangerschafts-Outcome?

		Elternteil krank	
		D	n
Elternteil krank	D	DD letal	Dn krank
	n	Dn krank	nn gesund

Mutationen in verschiedenen Domänen des *FGFR3*-Gens und resultierende Skelettdysplasien

Hypochondroplasia

SADDAN

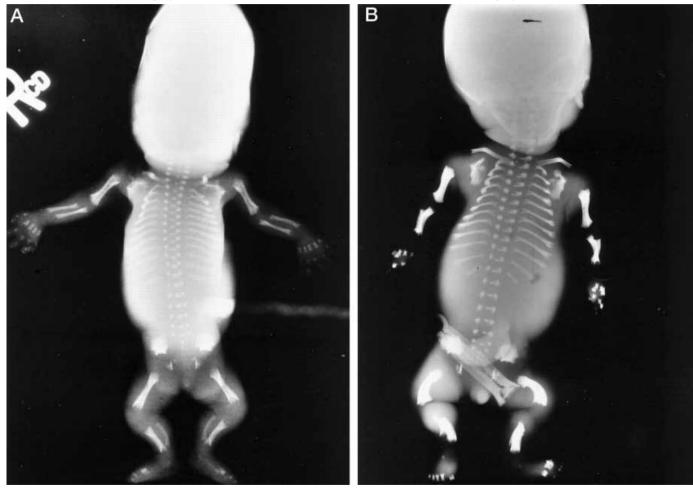
geringere craniofaciale und skelettale Beteiligung

Vajo, Z. et al. Endocr Rev 2000;21:23-39

S evere

A chondroplasia with

D evelopmental


D elay and

A canthosis

N igricans

Thanatophoric dysplasia

Type II Type I

Vajo, Z. et al. Endocr Rev 2000;21:23-39

ENDOCRINE REVIEWS

Muenke Syndrom

Coronale Kraniosynostose

→ uni- oder bilateral

Ev. Brachydaktylie, Taubheit

Crouzon syndrome with acanthosis nigricans

Kraniosynostose okuläre Protrusion Hautbeteiligung variabler Phänoytp DD: Crouzon Syndrom (*FGFR2*)

Weitere Beispiele AD vererbter Erkrankungen

Osteogenesis imperfecta COL1A1, COL1A2

Marfan Syndrom FBN1

• Ehlers Danlos Syndrom → Kollagenose > Gene

Klassischer Typ: COL5A1, COL5A2

Hypermobiler Typ: TNXB

Vaskulärer Typ: COL3A1

Kyphoskoliotischer Typ: PLOD1

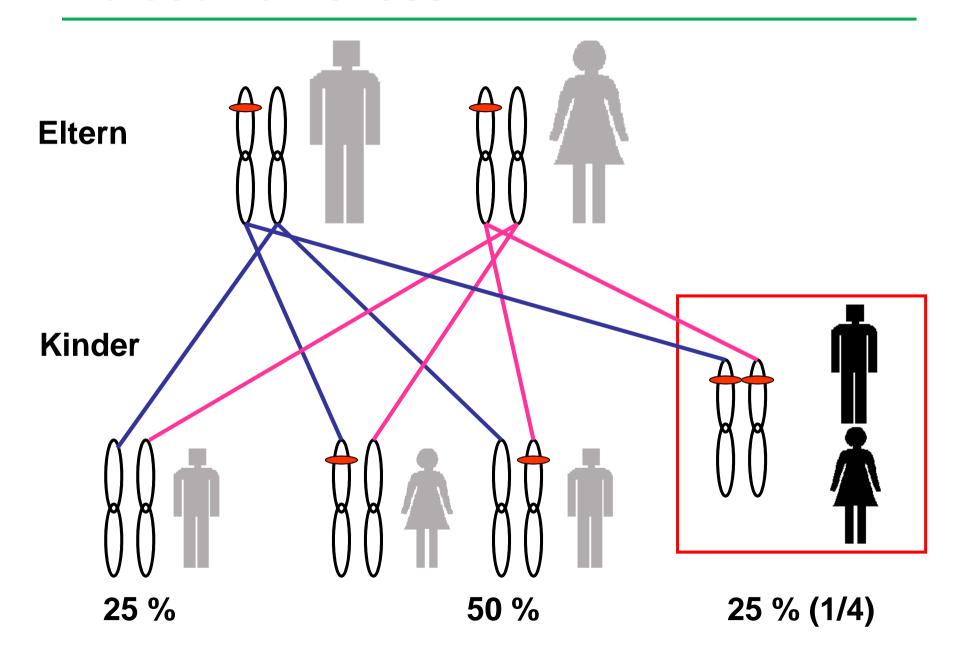
Arthrochalasia Typ: COL1A1, COL1A2 (Exon 6)

• Stickler Syndrom (AD) COL2A1, COL11A1, COL11A2

• Holt-Oram Syndrom TBX5

• Myotone Dystrophie:

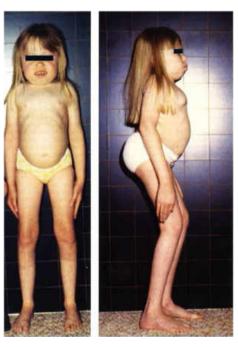
- Typ I DMPK


- Typ II CNBP (ZNF9)

Charakteristik des AR Erbgangs

- AR-Erkankungen treten häufig nur innerhalb einer Generation auf wobei das Verhältnis rein statistisch (1:2:1) beträgt
- Heterozygote Merkmalsträger sind gesund.
- Die Vererbung erfolgt geschlechtsunabhängig.

		Elternteil gesund	
		Ν	r
Elternteil gesund	Z	NN gesund	Nr gesund
	r	Nr gesund	rr krank


Autosomal rezessiv

Beispiele AR vererbter Erkrankungen

Speicherkrankheiten:

Mucolipidosen

z.B. Mucolipidose III (Pseudo-Hurler Polydystrophy Syndrom) GNPTAB (12q23.2)

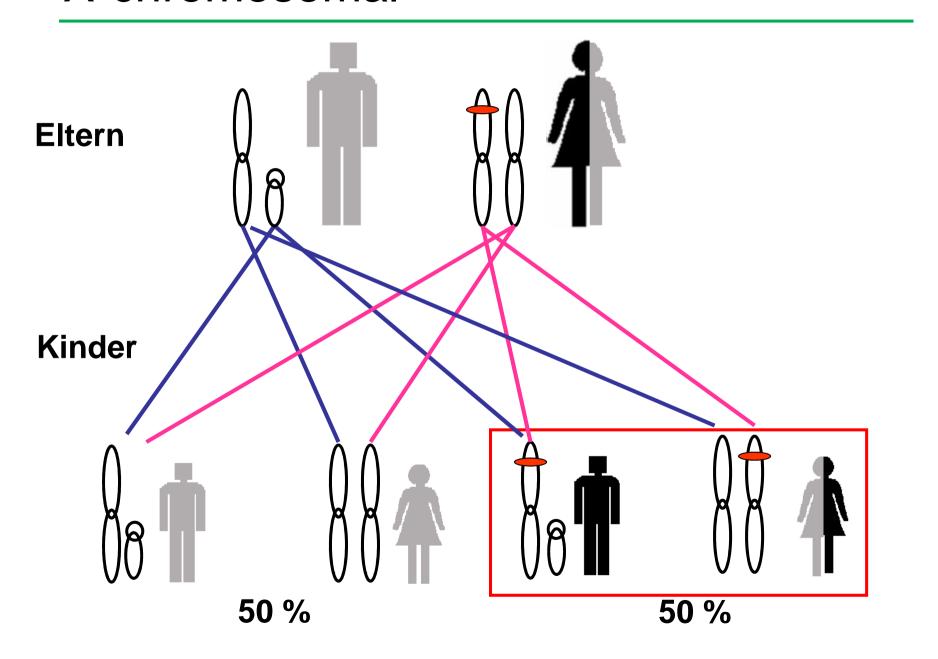
Mucopolysaccharidosen

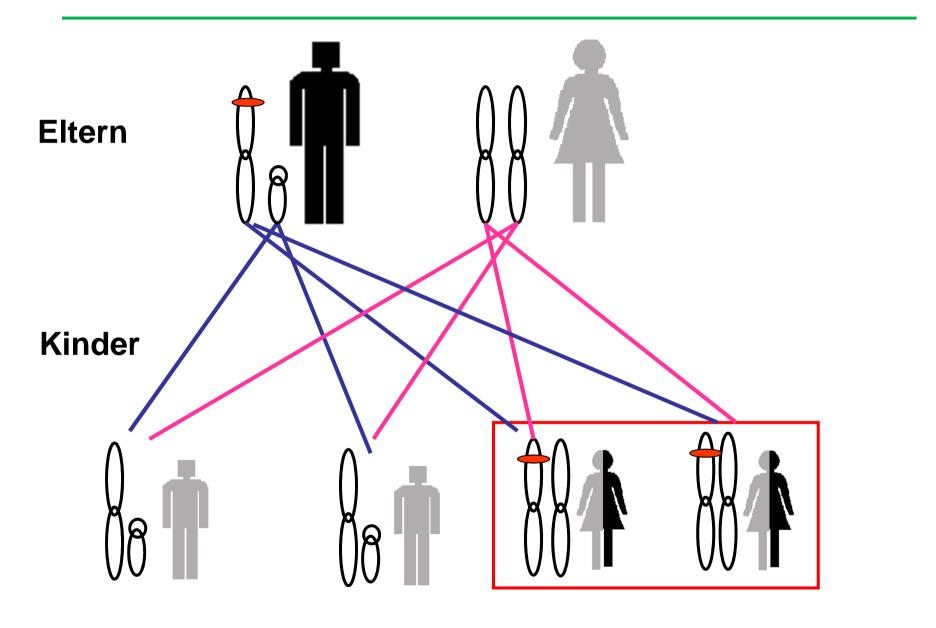
z.B. Mucopolysaccharidose I (Hurler Syndrom) *IDUA* (4p16.3)

Beispiele AR vererbter Erkrankungen

 Mucopolysaccharidose IV (Morquio Syndrom) GALNS (16q24.3)

Ulnar-Deviation, Gelenksvergrößerung, Mesomelie


Pectus carinatum, verkürzter Nacken


Genu valgum

X-chromosomal

X-chromosomal

Beispiele X-chromosomal rezessiver Erkrankungen

Dystrophinopathien:

Morbus Duchenne DMD (Xp21.2-p21.1)
 Morbus Becker DMD (Xp21.2-p21.1)

Blutgerinnungsstörungen

Hämophilie A
 Hämophilie B
 F8 (Xq28)
 F9 (Xq27.1)

X-chromosomal rezessiv:

- → Vollbild der Erkrankung nur bei ♂
- → ♀ sind meist asymptomatische Konduktorinnen
 - → CAVE: Skewed X-Inactivation
- → Weitergabe geschlechtsabhängig

Beispiele X-chromosomal dominanter Erkrankungen

X-linked Hypophosphatämie PHEX

X-linked Amelogenesis imperfecta AMELX

fokale dermale Hypoplasie PORCN

X-linked Alport Syndrom COL4A5

Rett-Syndrom MECP2

Incontinentia pigmenti

IKBKG

X-chromosomal dominant:

- → ♂ schwerer betroffen als ♀
 - → CAVE: Skewed X-Inactivation
- → bei ♂ häufig letal
- → Weitergabe geschlechtsabhängig

Danke für die Aufmerksamkeit

Kristina Aubell

Institut für Humangenetik Harrachgasse 21/7